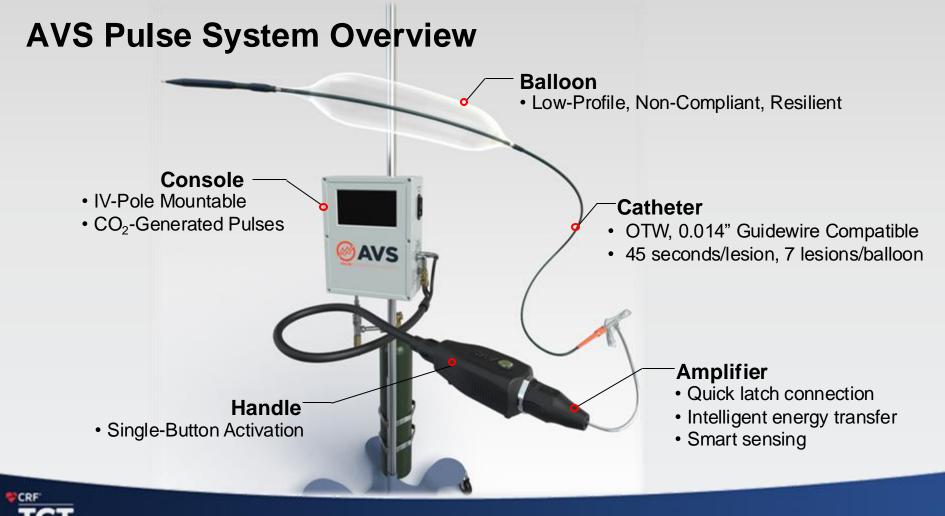
<u>Pulse Intravascular Lithotripsy to Open</u> vessels with calcific <u>Walls and Enhance</u> vascular compliance and <u>Remodeling</u>

First-in-human report from the POWER-PAD I study

Bibombe Patrice Mwipatayi, MD, MBA, Nelson Encarnación Santana MD, Alexandra Lansky MD, Robert S Chisena PhD, Hitinder S Gurm MD, **Jon C George MD**

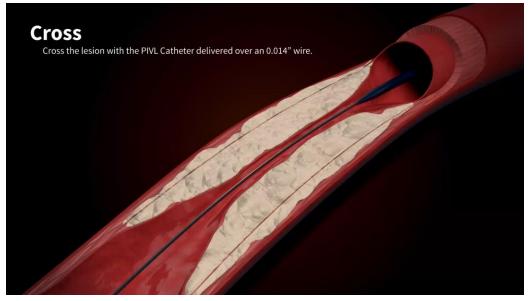
Disclosure of Relevant Financial Relationships

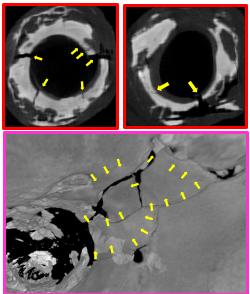

Jon C George, MD

Independent Medical Consultant

Amplitude Vascular Systems, Inc.

Faculty /Author disclosure information can be found on the app




Pulsatile IVL (PIVL) Fundamentals

Procedure Demo

CRF

PIVL results in calcium fracture

[Virmani R, Finn A, et.al., 2023]

Vimani R, Finn A V., Kutyna M, et al. Pubatile Intravascular Liftotripsy: A Novel Mechanism for Peripheral Artery Calcium Fragmentation and Luminal Expansion. Cardiovæc Revascularization Med. 2023;50:43-53. dd:10.1016/j.carev.2023.01.003

POWER-PAD I – First-in-Human Summary of PIVL

Study Design: Prospective, single-arm, multicenter, feasibility study. 12-month F/U **Objective:** Safety and performance evaluation of AVS Pulse IVL system in *moderate and severely calcified* superficial femoral and popliteal arteries.

Primary	Performance	Device Success, Technical Success, Procedural Success
	Safety	Major Adverse Events (MAE), consisting of Major Adverse Limb Events (MALE) at 30 days (unplanned major amputation or major reintervention of target limb.)
ndary	Performance	 Freedom from clinically driven TLR at 30 days, 6 month and 12 months <30% residual stenosis (QA) Improvement in Rutherford Class Score, ABI, EQ-5D, Walking Impairment
Secondary	Safety	 Major Adverse Events at 30 days (Major Adverse Limb Events and Procedure-related death at 30 days Major unplanned amputation of the target limb at 6 and 12 months

Study Endpoints

POWER-PAD I – Study Sites

Principal Investigators

Jon George Study PI **Nelson Encarnación** Centro Medico Moderno

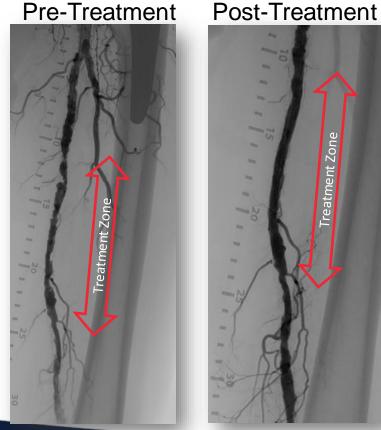
Patrice MwipatayiFerRoyal Perth HospitalF

Fernando Picazo Pineda Royal Perth Hospital

Location

Centro Medico Moderno Dominican Republic

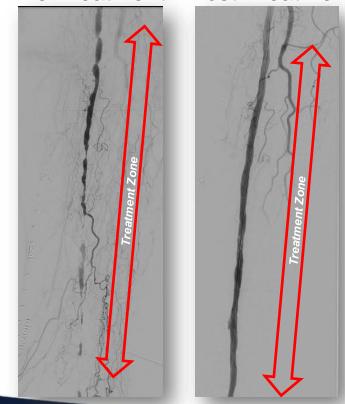
Royal Perth Hospital Australia


Enrolled

2

In-Depth Case Review #1

eatment Zone



Case Details

- 84 years old, male
- 402 mm Calcium Length
- 78% Pre-Tx Diameter Stenosis \rightarrow 25% Post-Tx Diameter Stenosis
- ~30 sec/lesion
- 100mm DCB used
- No stents used

In-Depth Case Review #2

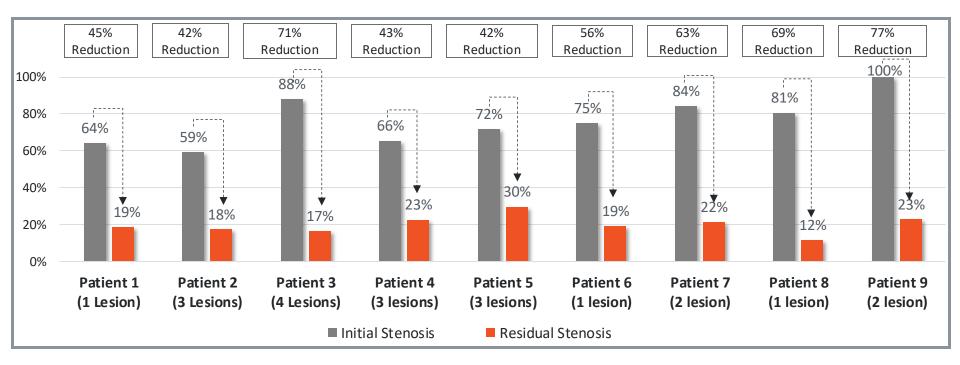
Pre-Treatment Post-Treatment

Case Details

- 94 years old, female
- 312mm Calcium Length
- 100% Pre-Tx Diameter Stenosis → 23% Post-Tx Diameter Stenosis
- ~45 sec/lesion
- 2x150mm DCBs used
- No debris in Distal Embolic Protection
- No stents used

Results: Primary Endpoints & Functional Outcomes

Primary Performance:	Pt 1	Pt 2	Pt 3	Pt 4	Pt 5	Pt 6	Pt 7	Pt 8	Pt 9
 Device Success: Successful delivery Balloon inflation, deflation and retrieval 		\checkmark							
 Technical Success: Successful vascular access Completion with or without adjunctive therapy Achievement of ≤50% residual stenosis 	\checkmark								
Procedural Success:Absence of procedural complications	\checkmark								
Primary Safety Endpoint:									
Major Adverse Events @ 30 days: • Major amputation • Major reintervention	No MAE								



A Real-World, First-in-Human Study By the Numbers

9 Patients with calcified popliteal lesic		20 Lesions treated with 89% defined as heavily calcified by PARC			253mm Average calcified lesion length			
22% ± 6% Average post-procedural stenosis vs. 82% ± 11% at baseline		O ≥ Grade D dissections				1 ± 0.8mm Iuminal gain		
1.0 ± Mean ABI at vs. 0.6 ± 0.1 at		at 30 days	Mean Rutherf	ford Sc	1.3 core at 30 days baseline			

Snapshot of Per Patient Stenosis Pre-vs. Post-Procedure

*Results adjudicated by Yale Angiographic Core Lab

POWER-PAD I Study Conclusion

The conclusions of the first-in-human study are:

- 1) The AVS Pulse IVL System met its primary and secondary performance and safety endpoints;
- 2) The technology was successful in treating heavily calcified femoropopliteal disease;
- 3) Acute results from normally challenging cases were impressive;
- 4) Pivotal trial is warranted for powered outcomes.

